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of factors (Fig. 1). In yeasts, the secretory pathway presents 
a major bottleneck in protein production and thus, many 
studies dealt with overcoming limitations in the secretory 
pathway by genetic engineering of the host cell [29, 31]. 
In mammalian cells, secretory capacity is usually not the 
limiting factor and engineering strategies rather focus on 
the construction of stable cell lines and on process, media 
and feeding conditions which result in high culture longev-
ity, high integral viable cell density, process robustness and 
eventually high titer of a high-quality product [6, 101, 144]. 
In general, recombinant protein production results in a met-
abolic burden for the cell, which can cause limitations in the 
supply of precursors, energy and redox equivalents [89, 90, 
102]. Recent studies focus on this issue in yeasts and mam-
malian cells, describing the impact of recombinant protein 
production on the metabolism of the host cell and the inter-
action between recombinant protein production and host 
cell physiology. Systems biology approaches aim at under-
standing global changes in proteome, transcriptome and 
metabolome of the cells in response to the burden of recom-
binant protein production [47, 57, 70, 106]. In this review, 
we will focus on the metabolic burden of recombinant 
protein production in yeast and mammalian cells: we will 
describe the impact of recombinant protein production from 
transcription and translation to protein processing and secre-
tion, and summarize recent strategies by genetic, media and 
bioprocess engineering to overcome this metabolic burden.

Metabolic demand for protein synthesis

Biosynthesis of proteins is associated with a certain meta-
bolic cost. Amino acids are the building blocks of proteins 
and thus contribute strongest to the metabolic demand for 
recombinant protein production. In yeast, often glucose or 

Abstract  Metabolic bottlenecks play an increasing role in 
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require complex posttranslational modifications. We review the 
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abolic engineering of such cells to optimize the supply chain 
for building blocks and energy. Methods comprise selection 
of beneficial genetic modifications, rational design of media 
and feeding strategies. Design of better producer cells based 
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increasingly possible. High-resolution methods of metabolic 
flux analysis for the complex networks in these compartmented 
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Introduction

The efficiency of recombinant protein production both in 
yeasts and in mammalian cells can be limited by a variety 
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glycerol serves as single carbon sources, which requires de 
novo biosynthesis of all amino acids. Though only part of 
the amino acids requires additional energy carriers for their 
biosynthesis when starting from these substrates, amino 
acids are characterized by a higher degree of reduction and 
therefore higher energy content per carbon atom [67, 119, 
125]. Their synthesis redirects precursor molecules from the 
central carbon metabolism and consumes energy in the form 
of ATP or electron carriers as NADPH provided by catabolic 
reactions. The energetic cost for the biosynthesis of amino 
acids can be estimated by the number of high-energy phos-
phate bonds cleaved thereby [117]. Table  1 comprises the 
cost for de novo biosynthesis of the 20 proteinogenic amino 
acids exemplarily for S. cerevisiae. The impact of de novo 
synthesis of amino acids on recombinant protein produc-
tion was demonstrated in P. pastoris by Heyland et al. [53], 
where selected feeding of only energy-intensive amino acids 
increased recombinant protein production significantly.

Translation and transcription pose the second major 
expense during protein production. Overexpression of the 
protein-of-interest will at least initially results in increased 
levels of mRNA [109, 111], increasing the anabolic demand 
for nucleotides as well as energy for transcription and 

transport into the cytosol. Here, translation takes place at the 
ribosome complex and increased production of a recombi-
nant protein will also affect the biosynthesis of tRNAs and 
ribosomes and the associated energetic costs for the cell 
[17, 123]. Finally, biosynthesis of the protein itself is asso-
ciated with a high energetic cost. Recruitment and release 
of tRNAs and peptide bond formation is usually associated 
with hydrolysis of 3–4 GTP per peptide bond [74, 137].

An important difference between mammalian cell cul-
ture processes and protein production in yeast is the media 
applied. Whereas, yeasts are generally cultured in media 
containing only a very limited number of carbon sources 
and no or only few amino acids, mammalian cell culture 
media are generally supplemented with all amino acids, 
with some exceptions depending on media and feed strat-
egy [33, 37, 43, 145]. Therefore, amino acid synthesis is 
generally not a burden for mammalian cells, since the 
amino acids are provided in the media and are directly 
taken up by the cell. However, one important bottleneck 
might be transporters and transport kinetics. Depending 
on the protein product, uptake of amino acids might be too 
slow and might result in intracellular limitation of selected 
amino acid availability. Increased uptake of amino acids 

Fig. 1   Major connections 
between central metabolic 
pathways providing precursors, 
cofactors and energy for protein 
synthesis and secretion
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and inefficient amino acid transport and its impact on pro-
ductivity have been discussed for different producer cell 
lines [4, 34, 130], but there is a need for extended studies 
here, since there are, to our knowledge, no studies or data 
available that claim to understand and, most importantly, 
predict this issue.

Metabolic demand for biosynthetic and secretory 
machineries

The metabolic demand of secreted proteins is by far higher 
compared to cytosolic expression. After co- or posttrans-
lational entry of the protein-of-interest into the endoplas-
mic reticulum (ER), active transport through the secretory 
machinery is associated with a high energetic cost of GTP 
[21, 150]. Especially in the case of recombinant proteins, 
repeated misfolding and refolding in the ER and the Golgi 
apparatus can occur. This is again associated with high 
energy costs regarding ATP [7, 85] as well as a steady drain 
on NADPH and FADH2 for oxidative refolding of disulfide 
bonds [85, 134]. Using strong promoters can quickly result 
in the accumulation of misfolded proteins in the ER and 

the Golgi apparatus. Here, a high number of misfolded pro-
teins can induce the unfolded protein response (UPR). This 
global response of the cell to folding stress in the secretory 
pathway will on the one hand induce expression of chap-
erones to support folding, thus increasing the metabolic 
demand for the upkeep of the secretory machinery [126]. 
On the other hand, the expression of secreted proteins will 
be suppressed to allow the cell to deal with the amount of 
misfolded proteins already present in the secretory path-
way, which can be reflected in strong changes in the metab-
olism [120]. Thus, transport and folding are carbon drain-
ing, energy-intensive processes for the cell, but a proper 
estimation of the actual costs is complex and difficult.

Posttranslational modification of secreted proteins is 
a further drain on cellular resources and glycosylation 
plays a major role. In yeast, hyperglycosylation is always 
an important topic, and while mostly the negative conse-
quences on activity of recombinant proteins or immuno-
genicity are discussed, also the anabolic demand of high 
glycosylation for the host cell must be considered. Nucleo-
tide-activated sugars such as UDP-GlcNAc, GDP-mannose 
or UDP-glucose are the substrates for the many glycosyl-
transferases located in ER and Golgi apparatus [27, 50, 91]. 
The biosynthesis of these sugar metabolites is often associ-
ated with complex and energy-intensive pathways [91], and 
the supply of these sugars in fast-growing cells can even 
restrict the capacity of the secretory machinery [32]. Engi-
neering of yeast strains toward human-like glycosylation 
patterns can also result in severe impairments of growth 
and productivity [28, 95]. Aberrant glycosylation of host 
proteins can directly affect their functionality. The altered 
demand for nucleotide sugars, on the other hand can also 
result in a limitation of these precursors in the different 
compartments of the secretory pathway, which in turn will 
further limit the secretory capacity of the cell [45, 132].

Finally, also the anabolic demand of lipid biosynthesis 
during recombinant protein production must be consid-
ered. Secretion of recombinant proteins can result in ele-
vated lipid formation in yeast [74], and is associated with a 
high consumption of acetyl-CoA as main carbon precursor 
and cytosolic NADPH as main source of electrons for the 
reductive steps of the biosynthetic pathway [25, 52].

Metabolic flux analysis and modeling of protein 
biosynthesis and secretion

Metabolic flux analysis is one of the most important tech-
niques to study the impact of recombinant protein secre-
tion on the metabolism of the host cell. Metabolic flux 
analysis has been performed for various yeasts producing 
recombinant proteins, including S. cerevisiae, P. pastoris 
and S. pombe [46, 53, 63, 74]. The presence of organelles 

Table 1   Precursor and energy demand of amino acid biosynthesis in 
Saccharomyces cerevisiae

The protein production costs were taken from Raiford et al. [117] by 
calculating the average (per amino acid) number of high-energy phos-
phate bonds (*PO4) required for the synthesis of the average cellular 
protein’s constituent amino acids

Precursor Amino acid Energy demand [117]

2-Oxoglutarate Arginine 20.5

Glutamine 10.5

Glutamate 9.5

Isoleucine 38

Lysine 36

Proline 14.5

3-Phosphoglycerate Cysteine 26.5

Glycine 14.5

Serine 14.5

Oxaloacetate Asparagine 18.5

Aspartate 15.5

Methionine 36.5

Threonine 21.5

PEP + E4P Phenylalanine 61

Tryptophan 75.5

Tyrosine 59

Pyruvate Alanine 14.5

Leucine 37

Valine 29

Ribose-5-phosphate Histidine 29
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in eukaryotic cells leads to separation of metabolic path-
ways between these compartments. This compartmentation 
can tremendously influence precursor and energy avail-
ability for certain pathways and thus the metabolic flux 
distributions in the cell [75]. Here, an intelligent choice of 
13C-labeled substrates can help to elucidate compartmenta-
tion in eukaryotic cells [24, 44, 127]. Careful experimental 
design and balancing of cellular and reactor compartments 
permitted a non-stationary 13C metabolic flux analysis in 
CHO-K1 batch culture solely based on extracellular metab-
olite measurements [98]. These results showed that this 
basal cell line of many producer cells has very high activi-
ties of the pentose phosphate pathway as well as the TCA 
cycle. Jordà et al. [65] carried out a comprehensive meta-
bolic analysis in P. pastoris growing on glucose–methanol 
mixtures. They analyzed the intracellular metabolome and 
the dynamics of intracellular metabolite labeling in con-
tinuous culture.

With respect to protein production, especially amino 
acid biosynthetic pathways are of interest, where compart-
mentation between mitochondria and cytosol must be con-
sidered. Blank et  al. [14] described the compartmentation 
of amino acid biosyntheses for a variety of yeasts, which 
was identical for almost all amino acids and yeast spe-
cies. However, compartmentation of some key amino acids 
can vary between cytosol and mitochondria. In S. cerevi-
siae, alanine biosynthesis took place in the mitochondria 
and was partly shifted to the cytosol when switching to 
respiro-fermentative growth conditions [44]. While valine 
and leucine biosynthesis takes place in the mitochondria 
of S. pombe, this pathway is located in the cytosol of P. 
pastoris [42, 73]. This difference will directly influence 
the demand for the precursor pyruvate between both com-
partments as well as the supply of NADPH, which cannot 
be directly transported over membrane boundaries. In this 
context, malic enzyme plays a major role in mitochon-
drial NADPH supply in S. cerevisiae [44, 93]. In contrast, 
malic enzyme is located in the cytosol in S. pombe and with 
cofactor specificity for NAD+ instead [15], which leaves 
isocitrate dehydrogenase as sole source of mitochondrial 
NADPH [73, 74]. In summary, compartmentation may dif-
fer only for few but significant reactions of the central car-
bon metabolism, and thus must be investigated in detail for 
the construction of reliable metabolic networks as basis for 
rational network design, metabolic flux analysis and other 
metabolic modeling approaches [75].

As regards mammalian cells, metabolic flux analysis has 
been applied in recent years mostly to understand the influ-
ence of multiple conditions on energy metabolism [64, 100, 
104, 139]. Fluxes to cellular proteins and the protein prod-
uct are generally low compared to the ones in the central 
metabolism, and are usually directly determined through 
the composition of the cell and of the product (amino acids, 

sugars) and the specific growth rate. Importantly, revers-
ibility and compartmentation of the metabolism are mostly 
neglected. Knowing the reversibility of many reactions and 
the contribution of extracellular amino acids versus intra-
cellularly synthesized amino acids to the protein product 
would be interesting data, which are not generally gener-
ated. This could shed light on potential limitations. If, e.g., 
a high amount of a particular amino acid in the protein 
is not coming from an amino acid, which is provided in 
excess in the medium, this may indicate that, e.g., trans-
port of the amino acid is a bottleneck. Such aspects could 
be nicely studied applying specific 13C-labeled amino acids 
and measuring the resulting labeling patterns in the protein 
produced. Similar studies have already been performed to 
understand the channeling of substrates to different meta-
bolic pathways and finally metabolite products, but not sys-
tematically to understand the contribution of synthesis ver-
sus uptake concerning the amino acids in a protein [103].

A deeper understanding of production and transport pro-
cesses of recombinant proteins is of great interest. Pioneer-
ing studies for kinetic modeling of antibody formation and 
secretion in hybridoma cells were performed in the early 
1990s by Bibila and Flickinger [11–13]. Other kinetic 
models followed, describing recombinant protein produc-
tion in insect cells and filamentous fungi [108, 142]. In the 
latter study, 35S-labeling of methionine was used to trace 
the biosynthesis of cellobiohydrolase in Trichoderma reseii 
throughout the different cellular compartments and esti-
mate an average time for complete transport and secretion 
between 4 and 11 min. In a recent study, Pfeffer et al. [115] 
used an analogous approach, feeding 34S as sodium sulfate 
and using the incorporation of 34S-containing amino acids 
to determine kinetics of production, degradation and secre-
tion of a recombinant antibody fragment in P. pastoris. In 
mammalian cell culture bioprocesses, proper glycosylation 
is crucial and kinetic models were developed with the aim 
of predicting product glycosylation. A dynamic model of 
N-glycosylation was used to describe the effect of increas-
ing expression of a target glycoprotein on the product gly-
coform distribution and to evaluate appropriate metabolic 
engineering strategies [77] Jimenez et al. [61] presented a 
dynamic mathematical model describing glycosylation and 
other processes of protein maturation in the Golgi appara-
tus that could be directly applied for engineering of protein 
production and secretion. Glycosylation network modeling 
was recently reviewed by Puri and Neelamegham [116].

Metabolic burden and bottlenecks

Production and secretion of a protein consume both car-
bon and energy. Thus, recombinant production of proteins, 
often driven by strong promoters, creates a constant drain of 
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cellular resources and results in a burden on metabolism and 
in case of secretion also on the secretory machinery. This 
burden has a strong impact on the central carbon metabo-
lism of the cell, affecting amino acid metabolism, energy 
and redox metabolism and provision of precursor molecules 
[10, 53, 63, 74, 80]. Increase in RNA content and interest-
ingly also lipid content has been observed in a human cell 
line upon production of a recombinant protein [102].

Often, cell growth and the macromolecular composition 
of the cell already reflect the metabolic changes in response 
to recombinant protein secretion. For P. pastoris and S. cer-
evisiae, a decrease of the maximum specific growth rate 
µmax by 43 and 35 %, respectively, has been attributed to the 
intracellular production of a recombinant protein [46, 53]. 
Recombinant protein production caused an increase in the 
cellular protein and RNA content of S. cerevisiae and S. 
pombe [74, 81, 134]. Limitations can already occur at the 
stage of transcription and translation due to a drain of tRNA 
pools, limited mRNA availability by increased degradation 
or inhibition of its formation and suppression of ribosome 
biosynthesis [16, 17, 123, 134]. Additionally, strains of S. 
cerevisiae and S. pombe secreting recombinant proteins at 
a high level additionally showed an elevated cellular lipid 
content most likely correlated to an increasing number of 
intracellular membranes and transport vesicles, which can 
effectively limit the rate of protein secretion [56, 74].

Finally, an increased level of protein production is obvi-
ously a constant drain on amino acid biosyntheses, result-
ing in decreased pool sizes of free amino acids in recombi-
nant protein producing P. pastoris [19, 64]. The increased 
amino acid demand in turn causes a higher demand for pre-
cursors and energy supplied from the central carbon metab-
olism, causing strong rearrangements of metabolic fluxes 
[10, 46, 74, 134].

Limitations of metabolic pathway activities do finally 
limit the secretion of the protein-of-interest. The TCA 
cycle, as a main source of precursors and energy represents 
a common bottleneck in recombinant protein secretion in 
yeast. For P. pastoris producing intracellular recombi-
nant proteins, constant TCA cycle fluxes were described 
with increasing level of product formation to cope with 
an increased precursors demand, although glucose uptake 
was lowered at the same time [53, 99]. In contrast, intra-
cellular production of recombinant superoxide dismutase 
in S. cerevisiae resulted in a decrease of TCA cycle fluxes 
[46]. Decreased TCA cycle fluxes were also described for 
S. pombe and strains of the filamentous fungus Aspergillus 
which were secreting recombinant proteins [36, 74, 114]. 
Different from that, strains of P. pastoris showed no impact 
on TCA cycle activity [10] or even an increase in activity 
[62] when secreting recombinant proteins. It appears that 
different yeasts (and fungi) regulate TCA cycle activity 
very differently to cope with an increased metabolic burden 

caused by recombinant protein production. Especially P. 
pastoris cells seem to be able to counteract the metabolic 
burden by upholding or even increasing a certain carbon 
flux through the TCA cycle. However, for other yeasts, the 
additional demand for energy, redox equivalents and carbon 
associated with secretion appears to limit metabolic fluxes 
toward the TCA cycle, resulting in the observed decreased 
TCA cycle activity and thereby limiting protein secretion.

Redox and energy metabolism represent the second 
major bottleneck in yeasts. Protein production is asso-
ciated with elevated activities of the PPP, which is the 
major source for cytosolic NADPH [10, 46, 74]. Cytosolic 
NADPH is mainly consumed in the biosynthesis of amino 
acids and the increased formation of lipids associated with 
elevated levels of protein secretion [56, 74]. Additionally, 
electrons for folding and refolding of disulfide bonds dur-
ing protein secretion are supplied by cytosolic NADPH via, 
e.g., glutathione in yeast [71, 134]. Controlling the redox 
state of the cytosol and the endoplasmic reticulum is a 
prerequisite for efficient folding and secretion of proteins 
in yeast [30, 148]. Increased protein production has been 
associated with increased oxygen uptake and NADPH for-
mation in α-amylase producing strains of S. cerevisiae and 
in S. pombe high-level maltase producers [74, 134]. Protein 
production and secretion are also associated with ATP con-
sumption during biosynthesis of amino acids and peptide 
bond formation as well as during active transport out of the 
cell. The TCA cycle is the main source of ATP, and limita-
tions in its activity have been shown to hamper secretion in 
P. pastoris and S. pombe cultivated under respiratory condi-
tions [53, 74]. In response to recombinant protein produc-
tion, the Crabtree positive yeast P. pastoris reduces the for-
mation of fermentative byproducts [53, 99]. This indicates 
more efficient utilization of the available carbon source, 
which was also observed for protein-secreting strains of 
S. pombe when grown under respiratory conditions [74]. 
Under fermentative growth conditions, TCA cycle activi-
ties are very low in Crabtree negative yeasts. To meet the 
increased demand for ATP, increased glycolytic fluxes and 
increased NAD+ regeneration via fermentative pathways 
have been reported for S. cerevisiae [46, 82]. Thus, the 
metabolic bottleneck, namely ATP supply, is the same but 
depending on the growth conditions, the cells will pursue 
different routes of metabolic flux rearrangements to cope 
with this limitation.

In mammalian cells, different aspects of varying produc-
tivity and burden of protein production have been studied. 
This includes not only studies in which more or less non-
targeted omics technologies were applied to understand 
the system [3, 51, 78, 129, 131], but also studies in which 
genetic and metabolic optimization strategies were already 
proposed [8, 35, 97, 138]. Particularly proteomic and tran-
scriptomic analyses pointed to alterations in translation/
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protein synthesis, cell growth controlling networks, chaper-
ones, energy metabolism and cytoskeletal proteins [3, 129]. 
Yee et  al. [147] partly supported these findings by again 
studying the transcriptome and concluding that particu-
larly cytoskeletal elements, vesicle trafficking and endo-
cytosis go along with increased specific productivity. In 
another study, the metabolic burden of protein production 
on human AGE1.HN cells was studied by comparing a high 
producing cell line with its parental cell line [102]. It was 
observed that cellular RNA, lipid and phosphatidylcholine 
fractions were increased in the producer, which also caused 
metabolic changes, particularly increased glycine and glu-
tamate production. The results were additionally verified 
by setting up a detailed model of intracellular protein pro-
duction and simulating the theoretical changes on metabo-
lite demand upon increased production of a particular pro-
tein. It could be shown that the differences observed in the 
metabolic profile upon protein production match with the 
increased nucleotide, lipid precursor and C1 unit demand.

Engineering media for reducing the metabolic burden 
of protein production

A straightforward approach to improve recombinant pro-
tein production in yeasts is the supplementation of media 
with amino acids, as shown for P. pastoris and S. cerevi-
siae [53, 136]. Also, the use of different carbon sources 
besides glucose can be beneficial. Recently, Liu et al. [82] 
reported improved productivity of α-amylase with S. cer-
evisiae in batch cultures after the diauxic shift from glucose 
to ethanol consumption. Applying mixtures of glucose and 
acetate or glycerol and acetate during respiratory growth of 
S. pombe could improve production of homologous maltase 
[74] and of two recombinant proteins (manuscript submit-
ted) by overcoming limitations in the TCA cycle and lipid 
biosynthesis. Metabolic flux analysis of P. pastoris grown 
on mixtures of glycerol and methanol showed that this sub-
strate mix may be generally applicable to reduce the meta-
bolic burden of recombinant protein production [62]. How-
ever, increasing uptake rates of methanol lead to a complete 
metabolization of methanol to CO2, as shown by 13C meta-
bolic flux analysis. Therefore, a waste of substrate results. 
Thus, besides optimization of the media, also smart feed-
ing strategies are important during application of substrate 
mixtures [5]. The addition of vitamins and precursors can 
improve the production of a recombinant protein as well. 
A prominent case is the feeding of δ-aminolevulinic acid, 
a precursor of heme biosynthesis for the functional expres-
sion of horseradish peroxidase (HRP) in P. pastoris and S. 
cerevisiae [76, 92].

Besides the main carbon sources, also oxygen is an 
important substrate for the cell. Oxygen limitation results 

in an increased activity of fermentative pathways and 
therefore increased formation of byproducts. Surprisingly, 
recent studies with P. pastoris and S. cerevisiae described 
an improved specific recombinant protein production under 
oxygen limiting conditions [10, 81]. In case of P. pastoris, 
among others, membrane composition was affected by oxy-
gen limitation and addition of subtoxic concentrations of 
fluconazole, which is an inhibitor of ergosterol biosynthe-
sis, improved recombinant protein secretion in P. pastoris 
[9]. For S. cerevisiae, growth and production under anaero-
bic cultivation conditions could be further increased by 
addition of fumarate, which was not used as carbon source 
but served instead as final electron acceptor [81].

Media optimization for mammalian cells in general is 
a topic which cannot be dealt with in a short paragraph. 
Along the value chain of biopharmaceutical production, 
media development is an important issue and almost each 
company has its own strategy, processes and materials to 
deal with that. A large part of the biopharmaceutical pro-
duction process is focused on product yield, which drives 
among others drug costs and manufacturing capacity. 
Besides manufacturing equipment, process parameters and 
downstream process, the yield is mainly influenced, as dis-
cussed before, not only by characteristics of the cell and of 
the product but also by the media and feed regime applied. 
Therefore, media optimization is an important issue. In the 
media optimization process, components such as amino 
acids, vitamins, ions and other substrates are adjusted in 
media and feed solutions such that the cell culture process 
is perfectly supported. However, the main goal of media 
development is to support cell growth having a robust pro-
cess with high integral viable cell density, high product 
titer and high product quality. In the end, this “objective 
function” drives the development of media, which should 
reduce the metabolic burden since media components are 
adjusted such that limitation/accumulation of metabolites is 
avoided, and cell growth and product quality are supported.

Engineering cells for improved production

Genetic engineering of yeast cells to improve recombi-
nant protein secretion has been performed for decades and 
was recently expanded into so-called synthetic biology 
[70]. Most of these studies focus directly on the secretory 
pathway by overexpressing chaperones [58], engineer-
ing of the UPR [88] or vacuolar sorting pathways [56, 
59, 118]. While early studies dealt with overexpression 
of single chaperones to improve transport and folding, 
new approaches target transcriptional regulators to acti-
vate global cellular stress responses [54, 55, 135]. How-
ever, little literature is available which employs genetic 
engineering of central metabolic pathways to improve 
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recombinant protein production. In a specialized case, 
the production of human hemoglobin was significantly 
improved by metabolic engineering of the heme biosyn-
thetic pathway in S. cerevisiae [80]. Engineering of sub-
strate uptake is a target with apparently strong impact 
on the central carbon metabolism. For S. cerevisiae, the 
construction of a strain with a chimeric hexose transporter 
resulted in respiratory growth even under excess glucose 
conditions, which can be beneficial to avoid formation 
of ethanol and improve product yields [39, 107]. Mutant 
strains of P. pastoris were described where methanol 
assimilating pathways were downregulated to restrain 
methanol metabolization (Muts) [76]. Co-overexpression 
of formaldehyde dehydrogenase resulted in a strain with 
improved product per substrate yield and rates compara-
ble to strains without an engineered methanol utilization 
pathway [76].

Recent publications describe model-based approaches 
for the identification of metabolic targets [38, 105]. 
Genome-scale metabolic models, which also consider 
metabolic demand for precursors, energy and transport 
reactions, were presented for S. cerevisiae and P. pasto-
ris. The P. pastoris model has been applied for the devel-
opment of strategies to improve production of an intra-
cellular protein, human superoxide dismutase (hSOD) 
[105]. Predicted targets for gene overexpression were 
located in the PPP and TCA cycle, and included deletion 
of fermentative pathways. Construction of these strains 
for model validation actually proved that most predic-
tions had the desired effect, thus showing the high ben-
efit such models create for the rational engineering of the 
central carbon metabolism for recombinant protein pro-
duction. In a protein secretion study in A. niger, 13C met-
abolic flux analysis and in silico network analysis using 
elementary modes revealed several interesting targets 
for improved protein production [36]. The S. cerevisiae 
model developed by the Nielsen group [38] comprises 
a whole-genome approach to describe the energetic and 
metabolic demand of the complete secretory machinery 
to predict the cost, and thus the efficiency of secretion for 
a variety of recombinant proteins in yeast. To our knowl-
edge, this is the first whole-genome attempt to model the 
complete yeast secretory machinery. However, verifica-
tion of predicted targets to improve recombinant pro-
tein secretion is still pending at this point. In the future, 
isolated genetic engineering strategies will be further 
replaced by more systematic approaches to achieve fur-
ther significant optimization of yeast recombinant pro-
tein production. In this context, the need for multi-omics 
studies to gain a systematic understanding of the cell and 
the power of genome-scale models to predict engineering 
targets in both the metabolism and the secretory machin-
ery is evident.

In contrast to yeast, rational genetic engineering 
approaches for mammalian cell lines have been hampered 
for years since high-quality genome sequences were not 
available. This changed since sequences of the genomes 
of different CHO cell lines have been published and are 
available now [18, 48, 49, 79, 124]. Additionally, compa-
nies started to apply next-generation sequencing to get 
the genome sequences of their proprietary cell lines. Host 
cell engineering for biopharmaceutical production will be 
boosted by next-generation sequencing techniques and 
also new gene editing techniques allowing understand-
ing and modifying cells conveniently [84, 121]. An inter-
esting option for the modification of regulatory processes 
are microRNAs: similar to transcription factors, micro-
RNAs can regulate expression of ~100 proteins allowing 
global changes in the cellular protein expression pattern 
and thereby metabolism and cellular behavior [94]. While 
exogenous supply of small non-coding RNA by transfec-
tion seems difficult but possible [41], endogenous produc-
tion of mature forms require careful design of DNA to 
achieve efficient transcription and functionality [72].

Importantly, genetic engineering is strongly supported 
by the increasing number and the improvement of syn-
thetic biology tools streamlining design and optimization 
of cellular processes [149]. Time and costs of metabolic/
genetic engineering can be significantly reduced by rely-
ing on appropriate in silico solutions increasing the success 
of projects [68]. A list of free online tools is provided, e.g., 
at http://syntheticbiology.org/Tools.html. Generally, there 
are not only different synthetic biology online tools, e.g., 
for vector editing, primer search, or sequence alignment 
or for simulating cloning operations such as primer design 
or codon optimization (e.g., Geneious, Genome Compiler, 
Vector NTI or Benchling), but also comprehensive soft-
ware packages which integrate many functionalities in one 
platform (e.g., Genedata Selector) [112]. One of the most 
prominent examples showing how to improve protein pro-
duction in a mammalian cell line is the overexpression of 
X-box binding protein 1 (XBP-1). It was shown that overex-
pression of this important regulator, which is normally func-
tional in plasma cells controlling differentiation and UPR, 
resulted in an expansion of the cellular secretion machinery, 
i.e., endoplasmic reticulum and Golgi apparatus and finally 
in enhanced productivity of Chinese Hamster Ovary cells 
[133]. Another very interesting genetic engineering strategy 
focused on modifying the expression of the regulator cdc42. 
It was found particularly that fast cycling cdc42 GTPase 
enhanced protein production yield and accelerated traffick-
ing of proteins from endoplasmic reticulum to the Golgi 
[122]. In this context, Selvarasu et al. [128] could recently 
demonstrate the impact of lipid precursor availability limit-
ing intracellular protein trafficking during a CHO fed-batch 
process performing metabolomics-based metabolic flux 

http://syntheticbiology.org/Tools.html
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analysis. Important processes in mammalian cells are pro-
tein refolding primarily carried out by chaperone systems 
and protein foldases as well as the UPR that can be engi-
neered to improve productivity and product quality [69]. In 
the future, we envisage more studies concerning the influ-
ence of cell cycle that is, however, still lacking powerful 
methods for investigation [60]. Generally, system biology 
methods will be increasingly important for designing pro-
ducer strains or cell lines as has been reviewed for glyco-
sylation and related pathways [96].

Concluding remarks

Engineering the supply chain, i.e., the supply of building 
blocks and energy not only for the protein synthesis and 
secretion itself but also for the machinery that is required 
for the synthesis and secretion, is gaining increasing inter-
est, both in industry and academia, particularly because 
of the high demand created by high rates and high titers 
attempted. Systems biology-oriented methods increasingly 
support the detailed study of function and control of the 
supply chain. The successful application of powerful new 
genetic engineering tools must go hand-in-hand with the 
development of novel and efficient computational tools for 
rational design of new strains and cell lines.
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